
Decision support tools

P ower plant owners have long
looked to models to guide
their operational and
investment decisions.

These decisions can involve
everything from scheduling plant out-
put over the next few hours or days to
analyzing the potential value of a gen-
eration asset over its lifetime of 20 to
30 years.

To support the broadest range of
decision making, the ideal model must

have certain capabilities. It
must be able to address market
price uncertainty, recognize the

optionality embedded in generation
assets, incorporate a realistic approx-
imation of physical plant constraints,
and capitalize on available in-house and
market data. This article provides an

overview of three leading techniques
for modeling generation assets in com-
petitive electricity markets. It begins,
though, by considering the drawbacks
of traditional modeling methods.

The stack approach
The conventional approach to model-
ing generation typically involves the cre-
ation of aggregate industry supply and
demand curves for the region of inter-
est. After the characteristics of all exist-
ing and planned generation facilities in
the region are compiled, plants are
“stacked up” in order of increasing
expected production cost. The model
then determines plant output levels and
market clearing prices at which projected
aggregate demand is met. This process
is illustrated in Fig. 1.

A production stack model can be as
simple as a spreadsheet, which provides
a static snapshot of supply in the
region. Most models, however, apply
linear or dynamic programming tech-
niques to determine equilibrium prices
and output levels, enabling more com-
plex factors—such as plant dynamic
characteristics, transmission conges-
tion, and emissions allowances to be
accounted for.

Cost-based stack models can there-
fore provide a reasonably detailed
representation of the physical properties
of electric power systems. Neverthe-
less, their application to modeling
generation assets in deregulated elec-
tricity markets has revealed several
shortcomings.

First, cost-based stack models rarely
reproduce all the features of observed
market prices. Electricity spot prices
are generally well behaved at low
demand levels and often show a strong
correlation to underlying cost drivers
at such times, but this relationship
tends to break down at higher load lev-
els. Compared to the results of cost-based
stack models, actual market prices typ-
ically exhibit much greater volatility and
more frequent price spikes.

The strategic bidding behavior of
market participants often contributes
to this discrepancy because players
exerting market power often elevate
prices above cost-based levels, par-

Global Energy Business, January/February 2002 35

Generation modeling: 

The next 
generation

Stack modeling of power plant portfolios
cannot account for the price uncertainty
and volatility that competition brings to
energy markets. Three new modeling
approaches can, but each has upsides
and downsides that planners must
consider
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1. Indicative supply and demand curves are shown for the British electricity market during 2001.
Note that because winter and summer demand are assumed to be inelastic in the short term,
they are represented as vertical lines
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ticularly as the margin of supply over
demand tightens. By drawing upon
game-theory approaches—such as
Cournot pricing (see box, p. 37)—it is
possible to extend the cost-based mod-
eling framework to incorporate strate-
gic bidding considerations. Howev-
er, even these extended stack models
still tend to be geared towards ana-
lyzing equilibrium market conditions.
As such, they fail to replicate the
dynamic nature of the price-setting
process in deregulated electricity mar-
kets. Actual electricity prices behave
stochastically, responding to changing
weather conditions, demand fluctua-
tions, and equipment outages. In short,
electricity prices are hardly ever at
equilibrium levels.

This brings us to the second sig-
nificant drawback of traditional stack
models—their inability to adequate-
ly address market price uncertainty.
Stack models are generally deter-
ministic in nature, with plant output
choices made in full knowledge of the
paths of key input variables—such as
fuel cost and demand. In the real world,
of course, operating decisions have
to be made on the basis of uncertain
views of the future. Even if multiple
scenarios are run by sampling a range
of possible values for key parameters,
most models will not overcome their
perfect foresight: They still know with
certainty how the various parameters
will evolve in each scenario.

The third disadvantage of stack mod-
eling relates to changes in the level of
information transparency resulting
from retail electricity deregulation.
Traditional, engineering-based out-
put optimization models tend to require
extensive knowledge of generation
production costs and transmission sys-
tem conditions for all facilities in a
region, regardless of who owns them.
Often, this information was histori-
cally available within vertically inte-
grated utilities, but it is now increas-
ingly “commercially confidential” in
competitive markets. Conversely, con-
ventional generation models often fail
to capitalize on the rich pricing infor-
mation now obtainable in spot and
forward markets.

How financial options deal
with price uncertainty
Financial options provide an obvious
starting point for advancing generation
modeling beyond traditional, engi-
neering-based approaches to have
them account for price uncertainty.
This technique entails deconstructing
the generation asset into a portfolio of
simple options to which standard finan-
cial option pricing models can be
applied.

As an example, financial options
techniques treat power plants as strips
of options on the margin between fuel
and electricity prices—the spark spread.
Several spark spread models are avail-
able, and they can be used to analyze
the economic performance and value
of a generation asset under conditions
of market price uncertainty.

The inputs to these models typical-
ly include forward curves and volatil-
ities of fuel and power prices, as well
as the correlations among them. The
models also need to know the effi-
ciency of the power plant and its non-
fuel variable operating costs, if any.
In addition to being comparatively
simple to implement, spark spread
models can also provide a full range
of sensitivity analysis to inform trad-
ing and hedging strategies. They may,
for example, produce a set of “the

Greeks” to quantify the impact of
power and fuel prices and their volatil-
ity on a portfolio’s performance.

The drawback of  the  f inancial
option approach is often accuracy.
Spark spread models do not always
do a good job of predicting the pay-
off from operating a generating unit.
In particular, inter-temporal con-
straints—a plant’s startup costs, its
dynamic operating characteristics,
and its emissions performance—are
difficult to account for because each
time bucket is usually valued inde-
pendently.

Spark spread models also require
specification of the “granularity” of an
option to determine whether it should
optimally be exercised on a monthly,
weekly, daily, or hourly basis. A finer
granularity will lead to higher option
values, but may also produce infeasible
plant output schedules because inter-
temporal physical constraints are usu-
ally ignored.

Simulation-based
approaches
Thanks to inexpensive computing
power, Monte Carlo modeling meth-
ods have become attractive and increas-
ingly popular. The big advantage of sim-
ulation-based approaches is their
extreme flexibility, both in terms of
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2. A partial trinomial tree for a power plant is shown above. Each tree node represents an
electricity price ($/MWh) in bold and its associated probability. There is a separate tree for each
possible operational state of the generator. Transitions among the trees represent decisions to
ramp output up or down or keep it steady
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modeling underlying pricing process-
es and incorporating physical plant
constraints. It is straightforward to
ensure that all simulated output paths
represent feasible operational sched-
ules, overcoming one of the chief
shortcomings of the financial options
approach.

While it  is relatively simple to
derive feasible decisions by using
simulation techniques, determining
the optimal decision can be more
challenging. One promising approach
for representing generation assets
with complex inter-temporal con-
straints involves the creation of a

decision or value surface. This sur-
face represents the opportunity cost
of exercising the option at each point
in time as a function of relevant oper-
ational states, such as output level and
run time. It can therefore provide a
decision-maker or planner with an
intuitive understanding of how the
asset is operated by identifying pric-
ing points at which the plant’s out-
put should be increased, held steady,
or decreased for a given operational
state.

As with financial options, one draw-
back of the simulation approach is the
difficulty of assessing how accurate
it is. This has led to the exploration of
more rigorous modeling methodologies
that still handle price uncertainty.

Stochastic dynamic 
programming
Dynamic programming (DP) in the
context of traditional production
cost  models is  discussed earl ier.
While DP algorithms have long been
applied to derive feasible, cost-min-
imizing schedules for generation
plants, such models are generally
deterministic.  Stochastic dynamic
programming (SDP) extends this
approach to handle uncertainties in
market outcomes, jointly optimiz-
ing for both physical constraints and
spot-price uncertainty.

A common misunderstanding is that
feeding stochastically generated price
paths into a regular DP model con-
stitutes stochastic dynamic program-
ming. As should be apparent from the
previous discussion, this will result
in overvaluing the asset, since it implic-
itly assumes perfect foresight in prices
for each path. A true SDP algorithm
takes into account the probability of
each path and optimizes jointly over
all of them.

Tree-based models are perhaps the
most widely known SDP approach.
Trees model price uncertainty by hav-
ing each branch represent the proba-
bility of moving to the next price state.
A sophisticated version of this model—
such as the trinomial tree (Fig. 2)—can
capture a wide variety of price process
properties, including time-varying

volatility and mean reversion char-
acteristics.

Modeling generation assets requires
the creation of a trinomial “forest”—
a collection of price trees, each with
an associated operational state. Each
time an option to change output level
is exercised, you move to a different
tree. These transitions between trees
are governed by the physical and eco-
nomic constraints of the power plant.

Computation time is usually the
biggest drawback associated with tree-
based SDP models. Because the size
of the tree grows both over time and
as branches are added, it can become
too unwieldy to work with if multiple
correlated sources of uncertainties are
modeled simultaneously.

Selecting the right
approach
To summarize, the major shortcom-
ing of traditional, stack-based modeling
is its inability to address price uncer-
tainty and volatility. Three alterna-
tive approaches for modeling gener-
ation assets in deregulated power
markets reviewed are financial options,
simulation-based methods, and SDP
trees. Each has its strengths and weak-
nesses, and necessitates tradeoffs either
in computation time, flexibility, or
intuitive understanding of the model’s
inputs and outputs.

Accordingly, it is impossible to say
which approach best suits the needs of
any particular energy company. Dif-
ferent players have different require-
ments for decision support in opera-
tions, trading, and risk management.
Some organizations may wish to use
a combination of several modeling
techniques. For example, an SDP
approach could be used to benchmark
a faster simulation or spark spread
model under consideration. This would
help ensure that trading and opera-
tional decisions are not significantly
biased by the shortcuts used by real-
time pricing models. ■
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Glossary of 
generation 
modeling terms

Cournot model. From the field of
game theory, a model in which each
firm aims to maximize its profits by
choosing an output level while
assuming that its competitors are
doing likewise.

Dynamic programming. The
basis of optimization algorithms that
solve sequential decision problems
through backward recursion. That is,
they start at the final time period and
work their way backwards toward the
present.

Monte Carlo simulation. A math-
ematical technique for numerically
solving problems by randomly gener-
ating values for uncertain variables
multiple times.

Stochastic dynamic program-
ming. Used in algorithms designed to
optimize under conditions of uncer-
tainty.

The Greeks. A standard set of
sensitivity results commonly used by
traders to quantify the exposure of
their portfolios to variations in factors
such as price (delta and gamma),
volatility (vega), and interest rates
(rho).

Trinomial trees. A form of sto-
chastic dynamic programming that
uses branching trees to represent the
probability of changing price states. A
trinomial tree has three branches at
each step.




